倒排索引简单实例

2019-11-14 15:11:00  浏览:200  作者:老王

  倒排索引简单实例

  倒排索引从逻辑结构和基本思路上讲非常简单。下面我们通过具体实例来进行说明,使读者能够对倒排索引有一个宏观而直接的感受。

  假设文档集合包含5个文档,每个文档内容如图33所示,在图中最左端一栏是每个文档对应的文档编号,我们的任务就是对这个文档集合建立倒排索引。

  中文和英文等语言不同,单词之间没有明确的分隔符号,所以首先要用分词系统将文档自动切分成单词序列,这样每个文档就转换为由单词序列构成的数据流为了系统后续处理方便,需要对每个不同的单词赋予唯一的单词编号,同时记录下哪些文档包含这个单词,在如此处理结束后,我们可以得到最简单的倒排索引(参考图34)。在图34中,“单词D”一列记录了每个单词的单词编号,第2列是对应的单词,第3列即每个单词对应的倒排列表。比如单词“谷歌”,其单词编号为1,倒排列表为(1,234,5},说明文档集合中每个文档都包含了这个单词。

  之所以说图34所示的倒排索引是最简单的,是因为这个索引系统只记载了哪些文档包含某个单词,而事实上,索引系统还可以记录除此之外的更多信息。图35是一个相对复杂些的倒排索引,与图34所示的基本索引系统相比,在单词对应的倒排列表中不仅记录了文档编号,还记载了单词频率信息(TF),即这个单词在某个文档中出现的次数,之所以要记录这个信息,是因为词频信息在搜索结果排序时,计算查询和文档相似度是一个很重要的计算因子,所以将其记录在倒排列表中,以方便后续排序时进行分值计算。在图35所示的例子里,单词“创始人”的单词编号为7,对应的倒排列表内容有(3;1),其中3代表文档编号为3的文档包含这个单词,数字1代表词频信息,即这个单词在3号文档中只出现过1次,其他单词对应的倒排列表所代表的含义与此相同。

  实用的倒排索引还可以记载更多的信息,如图36所示的索引系统除了记录文档编号和单词频率信息外,额外记载了两类信息,即每个单词对应的文档频率信息(对应图36的第3列)及单词在某个文档出现位置的信息。

  文档频率信息代表了在文档集合中有多少个文档包含某个单词,之所以要记录这个信息,其原因与单词频率信息一样,这个信息在搜索结果排序计算中是一个非常重要的因子。而单词在某个文档中出现位置的信息并非索引系统一定要记录的,在实际的索引系统里可以包含,也可以选择不包含这个信息,之所以如此是因为这个信息对于搜索系统来说并非必需,位置信息只有在支持短语查询的时候才能够派上用场

  以单词“拉斯”为例,其单词编号为8,文档频率为2,代表整个文档集合中有两个文档包含这个单词,对应的倒排列表为{(3:1×4>)(5;1<4>)},其含义为在文档3和文档5出现过这个单词,单词频率都为1,单词“拉斯”在两个文档中的出现位置都是4,即文档中第4个单词是“拉斯”。

  如图36所示的倒排索引已经是个非常完备的索引系统,实际搜索系统的索引结构基本如此,区别无非是采取哪些具体的数据结构来实现上述逻辑结构。

  有了这个索引系统,搜索引擎可以很方便地响应用户的查询,比如用户输入查询词“Facebook”,搜索系统查找倒排索引,从中可以读出包含这个单词的文档,这些文档就是提供给用户的搜索结果,而利用单词频率信息、文档频率信息即可对这些候选搜索结果选行排序,计算文档和查询的相似性,按照相似性得分由高到低排序输出,此即为搜索系统的部分内部流程,具体实现方案本书第5章会做详细描述。

评论区

共0条评论
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~

【随机新闻】

返回顶部